Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions
نویسندگان
چکیده
[1] Sedimentary molybdenum, [Mo]s, has been widely used as a proxy for benthic redox potential owing to its generally strong enrichment in organic-rich marine facies deposited under oxygen-depleted conditions. A detailed analysis of [Mo]s–total organic carbon (TOC) covariation in modern anoxic marine environments and its relationship to ambient water chemistry suggests that (1) [Mo]s, while useful in distinguishing oxic from anoxic facies, is not related in a simple manner to dissolved sulfide concentrations within euxinic environments and (2) patterns of [Mo]s-TOC covariation can provide information about paleohydrographic conditions, especially the degree of restriction of the subchemoclinal water mass and temporal changes thereof related to deepwater renewal. These inferences are based on data from four anoxic silled basins (the Black Sea, Framvaren Fjord, Cariaco Basin, and Saanich Inlet) and one upwelling zone (the Namibian Shelf), representing a spectrum of aqueous chemical conditions related to water mass restriction. In the silled-basin environments, increasing restriction is correlated with a systematic decrease in [Mo]s/TOC ratios, from 45 ± 5 for Saanich Inlet to 4.5 ± 1 for the Black Sea. This variation reflects control of [Mo]s by [Mo]aq, which becomes depleted in stagnant basins through removal to the sediment without adequate resupply by deepwater renewal (the ‘‘basin reservoir effect’’). The temporal dynamics of this process are revealed by high-resolution chemostratigraphic data from Framvaren Fjord and Cariaco Basin sediment cores, which exhibit long-term trends toward lower [Mo]s/TOC ratios following development of water column stratification and deepwater anoxia. Mo burial fluxes peak in weakly sulfidic environments such as Saanich Inlet (owing to a combination of greater [Mo]aq availability and enhanced Mo transport to the sediment-water interface via Fe-Mn redox cycling) and are lower in strongly sulfidic environments such as the Black Sea and Framvaren Fjord. These observations demonstrate that, at timescales associated with deepwater renewal in anoxic silled basins, decreased sedimentary Mo concentrations and burial fluxes are associated with lower benthic redox potentials (i.e., more sulfidic conditions). These conclusions apply only to anoxic marine environments exhibiting some degree of water mass restriction (e.g., silled basins) and are not valid for low-oxygen facies in open marine settings such as continent-margin upwelling systems.
منابع مشابه
Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments
Patterns of sedimentary trace-metal variation can provide information not only about benthic redox conditions, but also about other water-mass properties in ancient marine depositional systems. Trace metals such as Mo, U, V, and Re display conservative concentration profi les in the global ocean but varying concentration profi les in modern anoxic silled basins (e.g., the Black Sea, Cariaco Bas...
متن کاملTrace metals as paleoredox and paleoproductivity proxies: An update
This paper is a synthesis of the use of selected trace elements as proxies for reconstruction of paleoproductivity and paleoredox conditions. Many of the trace elements considered here show variations in oxidation state and solubility as a function of the redox status of the depositional environment. Redox-sensitive trace metals tend to be more soluble under oxidizing conditions and less solubl...
متن کاملPlanktonic Foraminifera of the Dariyan formation and implications of Oceanic Anoxic Event 1a
The investigated section cropping out in Kuh-e-Banesh, Zagros basin (southern Iran) is represented by limestone, Cherty beds and marllevels bearing abundant Planktonic foraminifers, radiolarian microfaunas, and ammonite imprints. For the first time, well to moderatelypreserved forms of Planktonic foraminifera have been extracted from black shale and marls levels. Extracted biota was studied wit...
متن کاملSeawater redox variations during the deposition of the Kimmeridge Clay Formation, United Kingdom (Upper Jurassic): Evidence from molybdenum isotopes and trace metal ratios
[1] The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of theMesozoic. In this study, we use themolybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with low...
متن کاملConstraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)
The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments-the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shale...
متن کامل